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Abstract

Active target defense is an area of exploration as strategic planners seek to protect

an airborne target from an attacker. Current counter measures include electronic

warfare (i.e. jammers) and diversionary measures (chaff or flares). An additional

defensive measure proposed is the employment of a defender missile. In an active

target defense scenario, a target is defended from an attacker with a defending mis-

sile. In this scenario, the target seeks to escape, the attacker strives to capture the

target, and the defenders goal is to intercept the attacker before the latter reaches

the target. The target and defender cooperate such that when the defender intercepts

the attacker, the target-attacker separation is maximized while the attacker strives

to minimize said distance. Approaches based on optimal control theory have been

proposed to develop guidance strategies for the target-defender team assuming the

attacking missiles control law is known. These approaches model the target defense

scenario as a one-sided optimal control problem. In previous work, the target defense

scenario has also been modeled as a two sided optimization problem, whereby linear

quadratic differential game theory is applied. In our work, pursuit-evasion differen-

tial game theory is applied to the target defense scenario. The targets, attackers, and

the defenders positional information is assumed to be known to the players. With

positional information, a computational efficient method of strategy synthesis can be

derived applying a differential game theory approach. We demonstrate that when

non-optimal strategies are employed by one of the players, e.g. LOS guidance, the

outcome will favor the players that employ the optimal strategy given by the solution

of the pursuit-evasion differential game.
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COUNTER WEAPON CONTROL

I. Introduction

Active target defense is an area of interest to the Air Force. Optimal control

theory has been employed to obtain strategies for both a defending missile and the

target aircraft to protect it from missile attack. Most of the scenarios considered in

the literature are two agent events consisting of the attacker and target, with one

assumption being a predictable trajectory for either the target or the attacker. In

practical applications, such a trajectory is not always predictable. In this work, it

is assumed that a target has a defender intercepting the attacker, resulting in an

active target defense scenario with three agents: the Target, the Attacker, and the

Defender. The research presented in this thesis explores an alternative method to

optimal control theory by taking advantage of positional information and differential

game theory to develop strategy formulations for all three agents. Expected benefits

are to develop an analytic solution that exploits positional data that is obtainable

from radar data.

Protecting a high value target from adversaries is a goal of any target defense sce-

nario. In the early days of warfare, the active target defense scenario would be about

defending a castle attack. In this scenario, the target castle is static: the defenders

are initially inside and somewhat static as they are to repel the attack; the attackers

are somewhat static in that the siege engines are not easy to move. The distance

from the siege engines to the castle walls would be a variable to be optimized. The

defenders’ goal is to maximize the distance the attackers can be from the walls, ren-
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dering the siege engines ineffective. The attacker’s goal is to minimize the angle, to

give the siege engines maximum effect. The scenario is a zero-sum game as one side

will control the distance to their advantage, and the strategies of all agents becomes

fixed once the siege begins.

As technology progressed, targets became mobile. An example of mobile target

are battleships of WW II, such as the Bismark. Before the final battle of the Bismark,

the ship was maneuvering to avoid incoming torpedoes of British aircraft. For this

scenario, the Bismark is a mobile target, the German gunners of the Bismark are the

static defenders and the British aircraft are mobile attackers. The attackers had to

adjust their strategy to be in the correct place to release the torpedoes and score a hit

on the Bismark. The Bismark strategy is to maneuver so the attackers do not have a

constant bearing to release the torpedoes. For the torpedoes to hit the Bismark, the

attackers would predict the trajectory of the ship and release the torpedoes based the

future position of the ship. The torpedoes had no ability to make heading changes in

response to the maneuvers of the Bismark. Fifteen British torpedo bombers attacked

the Bismark with torpedoes. Of the torpedoes launched at the Bismark, only two

hit: the predicted trajectory of the ship was correct for the two hits, and thus the

attackers scored a low hit ratio.

In more modern times, fighter aircraft could possibly be equipped with anti-air

missiles. Ground-based anti-air missiles are capable of hitting airborne targets at an

altitude of 30 thousand feet or more, as seen in the 1990’s in Iraq. For this scenario,

both the target and attacker are mobile. The counter-measures employed by the tar-

get are electronic countermeasures and flares. In this scenario, the target is an evader,

the attacker is a pursuer and there is no defender other than the countermeasures. An
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additional defensive option is to launch a defender missile to intercept the attacking

anti-air missile. Then the scenario changes from a two agent pursuit-evasion problem

to a three agent problem.

1.1 Problem Statement

The goal of this work is to provide a method of deriving guidance laws for the

three agent scenario by applying differential game theory. The guidance laws will be

developed based on positional information provided by an assumed radar system giv-

ing each agent situational awareness of the other agents. The developed guidance laws

will be capable of using the positional information to calculate an optimal strategy

to be taken by the agents. The optimal strategy will be tested against sub-optimal

strategies to verify the optimal strategy is the best choice for the agents.

1.2 Motivation

Active target defense system exists for armored vehicles. An example of one of

such systems is the Trophy Active Protection System [9]. This system is designed

to counter the threat of anti-armor threats such as anti-tank missiles or Rocket Pro-

pelled Grenades. The Air Force Office of Scientific Research is interested in basic

research into adversarial interactions where differential game theory and probabilistic

modeling can be employed to synthesize guidance laws [6]. The goal is to develop

a computationally efficient method of deriving optimal guidance laws based on posi-

tional information. Developed guidance laws would be able to utilize positional data

from radar systems to track and intercept threats. The goal is to develop systems

that can be fitted to existing aircraft ranging from attack aircraft, military transports

and commercial aviation. Military aviation would benefit as active defense systems
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are additional countermeasures to threats. Commercial aviation would benefit from

active defense systems to counter potential threats since some air routes pass through

conflict zones.

1.3 Scope

The scope of the research is to develop target and defender guidance laws based on

differential game theory. The outcome of this research is to validate the fundamental

geometry of the guidance laws. High fidelity flight dynamics are not within the scope

of this research. After the guidance laws are verified, future research will include

layering of flight dynamics and additional environmental effects.

1.4 Organization

Chapter I introduces the subject and provides a brief historical perspective. Chap-

ter II highlights the development of guidance laws as employed by the agents in the

active target defense scenario. Chapter III discusses the mathematical formulation

of the strategies employed by the agents, and an overview of the optimal control the-

ory analysis tool. Chapter IV presents the results of the simulations and the results

from the optimal control theory analysis tool. Chapter V presents the conclusions of

the simulations, a comparison between differential game theory solutions and optimal

control theory solutions, and directions for future research.
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II. Background

2.1 Introduction

This chapter provides a highlight of the development of some common guidance

laws for pursuit-evasion games. The highlights cover the early research breakthroughs,

followed by refinements to guidance laws for optimal control modeling. As part of

the refinement exploration, additional tools for solving pursuit-evasion games were

developed and modeled as differential equations leading to differential game theory.

Pursuit-evasion games have a zero sum outcome, that is the pursuer captures

the evader, or the evader escapes. Early research in pursuit-evasion scenarios led to

the development of Proportional Navigation (PN) guidance, which in steady state

amounts to collision course navigation. PN guidance laws are based on the assump-

tion that the attacker’s velocity is greater than the target’s velocity, and both have

constant velocities as explored in “Homing and Navigation Courses of Automatic

Target-Seeking Devices” by Yuan.[22]. The goal was to derive navigation laws that a

pursuer would employ to capture an evader. A key assumption is that the target is

moving on a fixed course, making the analysis of the engagement’s kinematics easier.

The simulations show the attacker following a curved trajectory that results in the

attacker homing in on the target. One of the conclusions of Yuan is that there is a

speed ratio critical to successful capture. The larger the ratio of attacker velocity to

target velocity, the larger the tangential curve. If the attacker’s velocity is more than

twice that of the target’s velocity, the attacker’s turn radius becomes large enough to

be impractical for a successful capture.

The issue of an accelerating target is also a subject of study. In a real-world

application, the target will not be moving in a predictable fashion as it executes

maneuvers to evade the attacker. This led to the development of Augmented Pro-
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portional Navigation (APN) as discussed by Garber in “Optimum Intercept Laws for

Accelerating Targets” [7]. The effect of target acceleration is considered as part of

the attacker’s guidance law. A target that has a changing course was also addressed

by implementation of an outer feedback loop in PN guidance laws. The addition of a

feedback loop yielded the optimal guidance law as noted in “Optimal Intercept Guid-

ance for Short-Range Tactical Missiles” by Cottrell [5]. All three guidance laws were

developed using optimal control theory. PN has received much attention in terms

of exploration for opportunities to refine the guidance law formulation discussed by

Baba and Yamaguchi in “Generalized Guidance Law for Collision Courses” [2]. An

assumption made in formulating these guidance laws is a predictable target trajectory

as discussed in “Differential Games and Optimal Pursuit-Evasion Strategies” by Ho

and Bryson [8].

Optimal control theory synthesized optimal strategies in two agent pursuit-evader

scenarios. Anderson examined formulations of the two body scenario in “Comparison

of Optimal Control and Differential Game Intercept Missile Guidance Laws” [1]. To

derive an optimal strategy for Target (T), it is assumed the Attacker’s (A) guidance

law is known. Conversely, to derive an optimal strategy for A, it is assumed T’s

guidance law is known.

Optimal control theory can minimize or maximize a variable provided the other

conditions are known or assumed. In a pursuit-evasion scenario implementing optimal

control theory solutions, a given scenario is solved where A minimizing or T maxi-

mizing the Attacker-Target (A-T) distance. Shima in “Optimal Cooperative Pursuit

and Evasion Strategies Against a Homing Missile” [19] demonstrated optimal control

theory application to pursuit-evasion scenarios involving two agents. The attacker

has the goal of capturing T, therefore the optimization problem entails minimizing

the A-T distance. The assumption made is T follows a predictable trajectory thereby
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making the problem one sided. The same scenario is also considered for T, where the

distance is maximized. To solve the problem as a one sided problem, A is assumed

to be following a predictable course.

Optimal control theory has been applied to three agent pursuit-evader scenarios

as explored by Boyell in “Counterweapon Aiming for Defense of a Moving Target”

[3]. The assumptions are (1) A’s guidance law is known, and (2) T and (3) a Defender

(D) are working in a cooperative fashion. The goal of the team is to have T avoid

capture by A. For this scenario, the optimal strategy is for T to evade A, and D

to intercept A. In “Optimal Cooperative Pursuit and Evasion Strategies Against a

Homing Missile” by Shima [19], the scenario investigated is A is homing in on T, and

T is luring A into the range of D where D can intercept A. Under this construct,

there are one of two end results can occur. The first one is the T-A interception

event, and the second one is the D-A interception event. Here, T is evading A, and

D is pursuing A. The goal for T, is minimizing the D-A distance, whereas in a one on

one engagement T would seek to maximize the T-A distance. Additional exploration

of the problem is examined by Prokopov in “Linear Quadratic Optimal Cooperative

Strategies for Active Aircraft Protection” [15].

Shima also examined a three agent problem where there is an A, and a D-T team.

The D-T team is considered to have a goal of minimizing the D-A distance. Rat-

noo,et.al also explored a solution for the D-T team in the three body problem where

the defender follows a Command to Line Of Sight (CLOS) in “Line-of-sight Inter-

ceptor Guidance for Defending an Aircraft” [16]. For CLOS guidance, T is tracking

both A and D. Ratnoo et.al further refined the LOS exploration in “Guidance Strate-

gies Against Defended Aerial Targets” [17]. Additional exploration and refinement of

CLOS was investigated by Yamasaki, et.al in “Modified Command to Line-of-Sight

Intercept Guidance for Aircraft Defense” [21].
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Applying optimal control theory to analyze pursuit-evasion scenarios can lead to

some high-level mathematics depending on what is being optimized (time to capture,

energy expenditure, or miss distance). In pursuit-evasion scenarios, both agents have

goals that are in direct opposition to each other. For example, the attacker’s strategy

is to minimize the distance to the target, and the target’s strategy is to maximize the

distance to the attacker. Oyler implemented differential game theory in “In Pursuit-

Evasion Games in the Presence of a Line Segment Obstacle” [12]. In the article, the

author solves for the optimal strategy with differential game theory. Optimal solu-

tions can be found for minimizing or maximizing. Given the agents have situational

awareness of the opposition, the problem entails a minimization and a maximization.

Minimizing and maximizing simultaneously, the problem becomes two-sided. Optimal

control theory may not the best tool for a two-sided problem and does not guarantee

capturability in the face of intelligent opposition [8]. The application of differential

game theory can address two-sided optimization problems and its big advantage is it

does not require prior knowledge of any one agent’s trajectory or strategy.

Differential game theory allows differential equations to model the attendant dy-

namics of the agents playing the game. Isaccs has analysis of pursuit-evader different

games involving two agents [10]. Game analysis included scenarios such as torpedo

and a ship, dog fighting aircraft or a missile intercepting an aircraft. Pursuit-Evasion

games are non-cooperative in nature as each player has goals that are in opposition

as discussed by Bressan in “Noncooperative Differential Games. A Tutorial” [4].

By using differential equations, the cost/payoff function can be set to zero (i.e.:

distance from Pursuer to Evader at end of game), and the resulting equation can

then be minimized for one agent and simultaneously maximized for the other. The

output of the solutions result in strategies for each side. The strategies developed are

the moves the agents can make to achieve their respective objectives. These games
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have a payoff quantity, and if both agents have selected strategies that yield the best

payoff for the respective agents, then optimal strategies were chosen. The payoff

under optimal play reached a min-max. The min-max is when a minimum for one

agent and a maximum for the other has been reached at game conclusion. When

non-optimal strategies are selected, the payoff will favor one agent more than the

other.

An alternative approach to solving a pursuit-evasion scenario involving three

agents is proposed by Rusnak in “The Lady, the Bandits, and the Body-Guard Game”

[18]. The goal of the Lady and the Body-guard is to maximize the distance to the

Bandits. The Bandits’ goal is to minimize the distance to the Lady. The proposed

game scenario is the Lady and the Body-Guards are one cooperative team and the

Bandits are an opposing cooperative team. The two teams have non-cooperative

goals, as the game is zero sum. An exploration of this concept was explored by

Perelman,et.al in “Cooperative Differential Games Strategies for Active Aircraft Pro-

tection from a Homing Missile” [14]. Currently, the literature supporting three body

pursuit-evasion games are modeled in DGT with predicted trajectories, and not with

positional information.

Differential game theory has a few differences over optimal control theory. PN

and APN do not have a feedback loop, and optimal control theory is suited to solving

open-loop problems. Differential game theory requires feedback, as the strategies

need to be identified with feedback control laws [8]. Optimal control theory does

not guarantee a conclusion to the game, whereas differential game theory will have

conclusion to the game. Optimal Control theory can solve for a minimum or maximum

solution. In differential game theory, two sided pursuit-evasion games can be solved

by finding a minimum and a maximum simultaneously. The motion of the agents

are described in the non-rotating Euclidean space, or realistic space, by kinematic
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equations. The kinematic equations can be reduced in degree in a rotating frame

called the reduced state space. As the pursuit-evader game takes place, the agents

have heading information to achieve their respective goals. The headings, or strategies

are synthesized in the reduced state space, and executed in the realistic space.

2.2 Summary

Early exploration of pursuit-evasion games lead to development of guidance laws

with modeling to find optimal solutions based in optimal control theory. As higher

fidelity models were explored, modified guidance laws developed. Additional tools for

solving pursuit-evasion games resulted in differential game theory.
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III. Methodology

3.1 Introduction

In this chapter, the methodology for strategy synthesis of the agents is presented.

First, the formulation of the problem is discussed. Next, the strategies of the agents

are presented. Third, the Apollonius circle is presented as part of the formulation of

strategies. The fourth topic is the optimization process. The fifth topic are the cases

where the target is static is presented. Finally, the setup the Optimal Control Theory

(OCT) problem solver solutions is discussed.

3.2 Formulation

The problem is formulated with the assumption engagement beginning Beyond

Visual Range (BVR). The agents playing the active target defense game are the

Target (T) aircraft, an Attacking (A) missile, and a Defending (D) missile protecting

the target aircraft. It is assumed that D will intercept A during the game at the

intercept point I. The goals for each agent are as follows: A seeks to minimize the

distance between the intercept point I where he is intercepted by D, and T; D seeks to

maximize the distance between said intercept point I and T; T, with a goal of escape,

seeks to maximize the distance between A and T at the instant of interception of A

by D at intercept point I. Both D and A have a capture circle. When A is in D’s

capture circle, the simulation ends as A has been intercepted. Likewise, when T falls

in A’s capture circle, the simulation ends as T is intercepted by A. At BVR, flight

dynamics and environmental effects are neglected. Thus, it is assumed the agents are

modeled as point masses. There is a velocity difference between A and T with the

assumption A’s velocity is higher than T’s velocity. The velocity ratio α is defined as

11



α =
vT
vA

(1)

where vA is the velocity of the attacker and vT is the velocity of the target. Thus, vA

is normalized, and vT , which is less than vA, is 0 < α < 1. If vT ≥ vA, then there is

no need for D or consequently the target defense game, as T can always escape. It

is here assumed that the velocities of A and D, are the same: vA = vD. The active

target defense game occurs in realistic space that is the non-rotating two dimensional

Euclidean plane (x,y). Within the realistic space, a reduced state space exists and is

designated as (X,Y). The reduced state space is constructed such that its x-axis is a

line segment connecting the points A and D, the y-axis is the orthogonal bisector of

the segment AD, and the origin O of the reduced state space (X,Y) is the midpoint

of the segment AD. Thus, the position of A in the (X,Y) reduced state space is

A=(AX ,0), the position of D =(−AX ,0) since the bisector is midway between A and

D, the starting point for A is mirrored by D along the X axis, and the position of

T=(TX , TY ). The attacker, defender and target coordinates in the realistic plane (x,y)

are designated as A=(Ax, Ay), D=(Dx, Dy) and T=(Tx, Ty), respectively. Figure 1

shows the realistic space and the reduced state space.
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Figure 1. Frame rotation

The origin of the local frame at O is at the midpoint of the segment AD and

its X-axis is aligned with the AD segment. Agents A and D have areas of control,

namely points in the plane which can be reached by A before D (as shown in Figure

1) and, vice versa, the points in the plane which D can reach before A. In the reduced

space, the boundary of the areas controlled by A and D is the orthogonal bisector

of the segment AD because vA = vD. It defines the Y-axis of the local frame whose

origin O is at the midpoint of the segment AD; the X-axis of the reduced state space

connects points A and D. Thus, the origin of the reduced state space (X,Y) in the

realistic space (x,y) is

(
OX , OY ) =

(
Ax +Dx

2
,
Ay +Dy

2

)
(2)

The reduced state space (X,Y) is rotated by an angle θ relative to the realistic

space plane (x,y):
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sin θ =
Ay −Dy√

(Ax −Dx)2 + (Ay −Dy)2
(3)

cos θ =
Ax −Dx√

(Ax −Dx)2 + (Ay −Dy)2
(4)

The transformation for translation and rotation of the reduced state space (X,Y)

relative to the realistic space (x,y) is

X = (x−Ox) cos θ + (y −Oy) sin θ (5)

Y = −(x−Ox) sin θ + (y −Oy) cos θ (6)

By inserting the expressions for sin θ, cos θ and the position of the reduced state

space origin O in the realistic space

X =

(
x− Ax +Dx

2

)(
Ax −Dx√

(Ax −Dx)2 + (Ay −Dy)2

)
+

(
y − Ay +Dy

2

)(
Ay −Dy√

(Ax −Dx)2 + (Ay −Dy)2

)
(7)

Y =

(
x− Ax +Dx

2

)(
Ay −Dy√

(Ax −Dx)2 + (Ay −Dy)2

)
+

(
y − Ay +Dy

2

)(
Ax −Dx√

(Ax −Dx)2 + (Ay −Dy)2

)
(8)
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Figure 1 shows the rotation angle between the reduced state space and the realis-

tic space. Since the reduced state space X-axis connects A and D, AY = DY = 0 by

construction. The bisector being halfway between A and D means that the agents A

and D are located one half the distance to the bisector. Thus, the positions of A and

D in the reduced state space are

For A:

AX =
1

2

√
(Ax −Dx)2 + (Ay −Dy)2 (9)

AY = 0 (10)

For D:

DX = −1

2

√
(Ax −Dx)2 + (Ay −Dy)2 (11)

DY = 0 (12)

For T:

TX =

(
Tx −

Ax +Dx

2

)(
Ax −Dx√

(Ax −Dx)2 + (Ay −Dy)2

)
+

(
Ty −

Ay +Dy

2

)(
Ay −Dy√

(Ax −Dx)2 + (Ay −Dy)2

)
(13)
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TY = −
(
Tx −

Ax +Dx

2

)(
Ay −Dy√

(Ax −Dx)2 + (Ay −Dy)2

)
+

(
Ty −

Ay +Dy

2

)(
Ax −Dx√

(Ax −Dx)2 + (Ay −Dy)2

)
(14)

3.3 Strategies

The goal for A is to get to T, and D’s goal is to prevent A getting to T by

intercepting A. Hence, the equal speed of agents A and D will meet at point I on the

orthogonal bisector of the segment AD as shown in Figure 2. The intercept point I is

on the Y axis and its vertical distance (noted as Y in Figure 2) is the distance from

the origin O to the intercept point I. The optimal choice of Y will be discussed in the

following sections. The strategies of each agent are specified in terms of heading in

the reduced state space. Figure 2 shows the strategies in the reduced state space.

For A : ψA = arctan AX

Y
(15)

For D : ψD = arctan AX

Y
(16)

For T : ψT = arctan TY −Y
−TX

(17)

16



Figure 2. Strategies in reduced state space

The simulations are performed in the realistic space. The realistic strategies are

expressed as the reduced state space heading with the rotation and translation be-

tween the spaces included. Figure 3 shows the strategies in the realistic space.

For A : φA = arctan AX

Y
+ θ (18)

For D : φD = arctan AX

Y
− θ (19)

For T : φT = arctan TY −Y
−TX

+ θ (20)

Figure 3. Strategies in the realsitic space

It is noted that as the strategy defined as an arc-tangent function composed of
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an X component and a Y component in the reduced state space, the Y component

is the aim point that impacts the heading to be taken by any agent. Assuming the

strategy of A is such that Y=TY , the state feedback (sub-optimal) strategies for the

A, D, and T agents in the realistic plane (see Figure 3) are

φA = arctan
AX
TY

+ arctan(
Ay −Dy

Ax −Dx

) (21)

φD = arctan
AX
TY
− arctan(

Ay −Dy

Ax −Dx

) (22)

φT = arctan
TY − Y
−TX

+ arctan(
Ay −Dy

Ax −Dx

) (23)

For the simulation, the only inputs to the dynamic equations are the initial positions.

Each time step is built with the inputs being the previous time step, and ends at

game conclusion. The dynamics in the realistic plane are therefore

ẋA =− sin
(
φA(Ax, Ay, Dx, Dy, Tx, Ty)

)
, xA(0) = xA0 (24)

ẏA = cos
(
φA(Ax, Ay, Dx, Dy, Tx, Ty)

)
, yA(0) = yA0 (25)

ẋD = sin
(
φD(Ax, Ay, Dx, Dy, Tx, Ty)

)
, xD(0) = xD0 (26)

ẏD = cos
(
φD(Ax, Ay, Dx, Dy, Tx, Ty)

)
, yD(0) = yD0 (27)

ẋT =− α cos
(
φT (Ax, Ay, Dx, Dy, Tx, Ty)

)
, xT (0) = xT0 (28)

ẏT =α sin
(
φT (Ax, Ay, Dx, Dy, Tx, Ty)

)
, yT (0) = yT0, 0 ≤ t ≤ tf (29)

where the game duration tf is

tf =
√
A2
X0 + Y 2 (30)
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and where

AX0 =
1

2

√
(Ax0 −Dx0)2 + (Ay0 −Dy0)2 (31)

Having obtained the A, D, and T trajectories (as shown in Figure 3) in the realistic

space (x,y), their respective representation in the reduced state space can be obtained,

namely AX(t), TX(t), and TY (t), where 0 ≤ t ≤ tf . Shown in Figure 4, and Figure 5

are the trajectories when Y=TY .

Figure 4. Reduced state space aligned with the realistic space. Agent A operating with
sub-optimal strategy, Y=TY

Figure 5. Reduced state space not initially aligned with the realistic space. Agents T,
D, employ sub-optimal strategy Y=TY and A employ LOS strategy

Figure 6 and Figure 7 show trajectories when A chose a Line Of Sight (LOS)
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strategy and T and D chose sub-optimal strategy Y=TY .

Figure 6. Reduced state space not initially aligned with the realistic plane. T, D, and
A operating with sub-optimal strategy.

Figure 7. Reduced space initially aligned with the realistic plane. T and D employing
sub-optimal strategy, A employing LOS strategy.

3.4 Apollonius Circle

The next case considered is where initially T is on the side of A. As before, A

seeks to minimize and D seeks to maximize the distance between T and the point I

on the orthogonal bisector of AD where D intercepts A.
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If A and T take a head on collision course, they would collide at point P as shown

in Figure 8. Since both A and T have moved over the same time duration, the ratio

of distances can be expressed as a ratio, and this ratio is equal to the speed ratio α.

Figure 8. A and T approaching with a head-on collision course

If T evades A, and A pursues T, A will capture T at point P shown in Figure 9

as the dotted line. Again, the ratio of distances is still maintained as α.

Figure 9. T evading A

If T selects a different escape route, A will catch T at point P shown in Figure

9 as the solid line. The ratio of distances is still maintained. All the points selected

where the ratio of distances are maintained as α, the resulting figure is a circle as

shown in Figure 10, which is the definition of an Apollonius circle [11].

Figure 10. T evading A
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A solution to the target defense differential game exist if and only if the Apollo-

nius circle, which is based on the segment AT and the speed ratio α, intersects the

orthogonal bisector of AD, as shown in Figure 11. This imposes a lower bound α

on the speed ratio such that it is required that 1 > α > α. The critical speed ratio

α corresponds to the case where the Apollonius circle is tangent to the orthogonal

bisector of AD. Also, if α=1, T always escapes and there is no need for D. The

center P of the Apollonius circle is on the collinear line through points A and T

is at a distance of α2

1−α2 d from T and its radius is α
1−αd, where the A-T separation

d=
√

(AX − TX)2 + (TY )2. Hence, in the reduced state space the following holds,

PX =
1

1− α2
TX −

α2

1− α2
AX

PY =
1

1− α2
TY

(32)

which yields the coordinates of the center of the Apollonius circle in the reduced state

space:

Figure 11. Apollonius circle in reduced state space

Given the position (AX > 0) of A, and the position (TX , TY ) of T the critical
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speed ratio α is the solution of the quadratic equation in α2

TX − α2AX = α
√

(AX − TX)2 − T 2
Y (33)

which is derived from

PX =
α

1− α2
d (34)

Solving for α yields

α =

√
(AX + TX)2 + T 2

Y −
√

(AX − TX)2 + T 2
Y

2AX
(35)

If TY > 0, ᾱ < 1⇒ ∃ 1 > α ≥ ᾱ

If TY =0, ᾱ =


TX
AX

< 1, if AX > TX

1, if AX ≤ TX

ᾱ < 1, except if TY =0 and TX ≥ AX

If the assumption 1 > α ≥ ᾱ is made, then a solution to the target defense dif-

ferential game of max-min the A-T separation at the instant of interception of A by

D exists; otherwise if α ≤ ᾱ, D will not be able to intercept A before A captures

T, and invariably T will be captured by A. If α ≥ 1, T always escapes and D is

not needed, therefore no differential target defense game can take place. Hence, the

standing assumption

1 > α > ᾱ
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3.5 Optimization

The cost /payoff function gives the Y coordinate on the orthogonal bisector that is

best aim point for the players to achieve their respective goals. For A, the cost/payoff

function is the optimal aim point for A to get as close to T by game conclusion. For

T, the cost/payoff function is the aim point for T to move as far away from A as

possible by game conclusion. The strategies for the players are shown in Figure 2 and

defined as

For A:

AX =
1

2

√
(Ax −Dx)2 + (Ay −Dy)2 (36)

AY = 0 (37)

For D:

DX = −1

2

√
(Ax −Dx)2 + (Ay −Dy)2 (38)

DY = 0 (39)

For T:

TX =

(
Tx −

Ax +Dx

2

)(
Ax −Dx√

(Ax −Dx)2 + (Ay −Dy)2

)
+

(
Ty −

Ay +Dy

2

)(
Ay −Dy√

(Ax −Dx)2 + (Ay −Dy)2

)
(40)
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TY = −
(
Tx −

Ax +Dx

2

)(
Ay −Dy√

(Ax −Dx)2 + (Ay −Dy)2

)
+

(
Ty −

Ay +Dy

2

)(
Ax −Dx√

(Ax −Dx)2 + (Ay −Dy)2

)
(41)

the cost/payoff function is the Y component of the heading formulation. Attacker

chooses his aim point I on the orthogonal bisector of AD to minimize the cost/payoff

function

J(Y ) = α
√
A2
X + Y 2 ±

√
(Y − TY )2 + T 2

X (42)

which is the I-T separation at time tf when D intercepts A at point I on the orthogo-

nal bisector of AD. In order to minimize the cost/payoff function, it is differentiated

with respect to Y and set to 0

J(Y)’ = α
Y√

A2
X+Y 2

± TY−Y√
T 2
X+(TY−Y )2

= 0 (43)

Rearranging

J(Y)’ = α
Y√

A2
X+Y 2

= ∓ TY−Y√
T 2
X+(TY−Y )2

(44)

Square both sides to remove the square root:

α2 Y 2

(AX+Y 2)
=

(TY−Y )2

(TY−Y )2+T 2
X

(45)

The final equation results in a quartic equation in the unknown Y, where Y ≥ 0:

(1−α2)Y 4−2(1−α2)TY Y
3+
[
(1− α2)T 2

Y + A2
X − α2T 2

X

]
Y 2−2A2

XTY (Y )+A2
XT

2
Y = 0

(46)

The quartic equation (Eq. 46) provides four solutions [20]. The solution are in two
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combinations: one combination with two real and two imaginary solutions; the other

has four real solutions. In the four real solution combination, the values needed are

the real positive minimum and positive maximum. When α =1, the equation becomes

a quadratic equation in Y

(
1− T 2

X

A2
X

)
Y 2 − TY (Y ) + T 2

Y = 0 provided |TX | 6= AX , (47)

however, if α = 1, there is no target defense differential game as A and T have the

same velocity and T can always escape. The quartic equation always has a real so-

lution 0 < Y < TY and an additional real solution Y > TY , provided that TX 6= 0.

If TX =0, then Y = TY is a repeated real root of the quartic equation. Since AX is

defined as the one half the distance between D and A, if AX = 0 then the conclusion

is the game has ended as D has intercepted A. It is noted that that both A and D

have a capture radius (r) > 0, and therefore the minimum value for AX is 2 r .

Three separate cases are considered where:

1. T is on the side of D, where TX <0

2. T is on the side of A ,where TX >0

3. T is on the orthogonal bisector AT ,where TX =0

Case 1.

The objective of T is to get to D territory. In the case where T is initially on the

side of D, where TX <0, the cost/payoff function is constructed as shown in Figure

12. The I-T separation distance is added to the distance T will travel during the

game since T is initially in D territory.
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Figure 12. Visulation of the cost/payoff function when in D territory

Thus the cost/payoff function is

J(Y ) =
√

(TY − Y )2 + T 2
X + α

√
A2
X + Y 2 (48)

It is the I-T separation at time tf when D intercepts A at point I on the orthogonal

bisector AD. Its first derivative in Y is

dJ

dY
=

(Y − TY )√
T 2
X + (Y − TY )2

+ α
Y√

A2
X + Y 2

(49)

and the second derivative in Y is

d2J

dY 2
=

T 2
X

[T 2
X+(Y−TY )2]

3
2

+ α
A2
X

(A2
X+Y 2)

3
2

(50)

Attacker is choosing Y to minimize the cost/payoff function J(Y). Hence, the solution

Y of the quartic equation must satisfy d2J
dY 2 > 0. In view of Eq (49), we know:

1√
T 2
X + (Y − TY )2

= −α 1√
A2
X + Y 2

(
Y

Y − TY

)
(51)
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Inserting Eq (51) into Eq (50) yields:

d2J

dY 2
=

1

(A2
X + Y 2)

3/2
[
αA2

X − α3

(
Y

Y − TY

)3

T 2
X

]
(52)

so

d2J

dY 2
> 0 iff

1

α2

(
AX
TX

)2

>

(
Y

Y − TY

)
(53)

The solution to the quartic equation (Eq. 46) yields four possible solutions. Imag-

inary are solutions not relevant and can be discarded. Since T is on the D side of

bisector AD, the solution needs to be a positive minimum at TY . Hence, the solution

Y < TY of the quartic equation yields d2J
dY 2 > 0 and there is a minimum at Y < TY .

Inserting Eq (51) into Eq (48) yields:

J(Y ) =
1

α

√
A2
X + Y 2

(
Y − TY
Y

)
+ α

√
A2
X + Y 2 (54)

so the cost/payoff function becomes

J(Y ) =
1

α

√
A2
X + Y 2

[
TY
Y
− (1− α2)

]
(55)

Figure 13 shows there is no need for the Apollonius circle as T is on the side of

the bisector AD under control of D; D intercepts A before A can capture T. The

resulting expected strategies under optimal play have different trajectories than what

is shown in Figure 4
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Figure 13. Expected behavior under optimal play for agents in reduced state space

Case 2.

Given the initial condition where T starts on the orthogonal bisector of AD, A

should pick Y = TY to minimize the separation distance. If A selects Y < TY , the

diagram is

Figure 14. Mobile Case 2

An examination of the diagram shows a triangle formed by T’s starting position

T, to T’s final position T’, and the solution Y of the quartic equation, as shown in

Figure 14.
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Figure 15. Mobile Case 2 triangle zoom

The information on the triangle is the distance from Y to TY , the distance on the

Y axis from T to T’, and the angle ϕ-the course of T as shown in Figure 15. The

application of the Law of Cosines solves the triangle, yielding the optimal Y. The

Law of Cosines is

c2 = a2 + b2 − 2ab cosϕ (56)

where a =
(
α
√
A2
X + Y 2

)
and b = (TY − Y ). The angle that is known is not the

inside angle, but the outside angle ϕ, leading to the last term in the Law of Cosines

to be positive rather than negative. Thus, cost/payoff function becomes

(
J(Y )

)2

=

(
α
√
A2
X + Y 2

)2

+ (TY − Y )2 + 2α
√
A2
X + Y 2 (TY − Y ) cosϕ (57)

Since A has chosen the aim point to be TY , T chooses ϕ to maximize J(Y), thus

ϕ∗ = 0 so the cosine for ϕ is 1, and the cost/payoff function is now

J(Y )2 =

(
α
√
A2
X + Y 2

)2

+ (TY − Y )2 + 2α
√
A2
X + Y 2 (TY − Y ) (58)

rearranging

J(Y )2 = (TY − Y )2 + 2α
√
A2
X + Y 2 (TY − Y ) +

(
α
√
A2
X + Y 2

)2

(59)
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and simplifying to a quadratic expression

J(Y )2 =

[
(TY − Y ) +

(
α
√
A2
X + Y 2

)]2
(60)

Taking the positive square root, the cost/payoff function becomes

J(Y ) =

(
(TY − Y ) + α

√
A2
X + Y 2

)
(61)

The plot of the cost/function is shown in Figure 16, observation leads to a con-

clusion the minimum point is located at TY .

Figure 16. Case where A chooses Y> TY

Next, assume A chooses Y > TY so the situation is

Figure 17. Mobile Case 2
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T chooses φ to maximize the cost/payoff function J(Y), thus ϕ∗ = π

The cosine for ϕ is -1, and the equation is now

J(Y )2 =

(
α
√
A2
X + Y 2

)2

+ (Y − TY )2 − 2α
√
A2
X + Y 2 (Y − TY ) (62)

applying the Law of Cosines and rearranging yields

J(Y )2 = (Y − TY )2 − 2α
√
A2
X + Y 2 (Y − TY ) +

(
α
√
A2
X + Y 2

)2

(63)

and simplifying to a quadratic expression

J(Y )2 =

[
(TY − Y )−

(
α
√
A2
X + Y 2

)]2
(64)

Taking the positive square root, the cost/payoff function becomes

J(Y ) =

(
(Y − TY )− α

√
A2
X + Y 2

)
(65)

The plot of the cost/function is shown in Figure 18, observation leads to a con-

clusion the minimum point is located at TY .

Figure 18. Case where A chooses Y< TY

The best value A can select in this case is Y = TY . It is A’s optimal choice. Hence
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the optimal strategy of A is Y = TY . This is also the solution of the quartic equation

when TX=0.

To determine T’s strategy, a limiting approach will be pursued. Let XT = ε(� 1)

for when TX =0 the solution of the quartic equation is Y=TY . The quartic equation is

solved where TX = ε and setting Y = TY +δ, |δ| � 1. This will allow for determination

of T’s optimal heading ϕ∗. Here δ is the distance from the solution Y of quartic

equation when TX = 0 to TY and ε is the x distance from the reduced state space of

the Y-axis to TY , as shown in Figure 19.

Figure 19. tanφ∗ = δ
ε

In original quartic equation,

(1−α2)Y 4−2(1−α2)TY Y
3+
[
(1− α2)T 2

Y + A2
X − α2T 2

X

]
Y 2−2A2

XTY (Y )+A2
XT

2
Y = 0

(66)

which it the same from Eq. 46, Y is replaced with (TY + δ) and solved for δ.
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Substitution:

(
1− α2

)
(TY + δ)4 − 2

(
1− α2

)
TY (TY + δ)3

+

[ (
1− α2

)
T 2
Y + A2

X − α2ε2
]
(TY + δ)2 − 2A2

XTY (TY + δ) + A2
XT

2
Y = 0

(67)

After expanding all terms and neglecting δ terms that are power three or higher ≈ 0,

the equation in δ becomes

(
1− α2

)(
T 4
Y + 4T 3

Y δ + 6T 2
Y δ

2

)
− 2

(
1− α2

)
TY

(
T 3
Y + 3T 2

Y δ + 3TY δ
2

)
+[ (

1− α2
)
T 2
Y + A2

X − α2ε2
]
(T 2

Y + 2TY δ + δ2)

− 2A2
XT

2
Y − 2A2

XTY δ + A2
XT

2
Y = 0

(68)

The terms can be grouped by powers of δ yielding

[ (
1− α2

)
T 4
Y − 2

(
1− α2

)
T 4
Y +

(
1− α2

)
T 4
Y +A2

XT
2
Y − α2ε2T 2

Y − 2A2
XT

2
Y +A2

XT
2
Y

]
[

+4
(
1− α2

)
T 3
Y δ−6

(
1− α2

)
T 3
Y δ+2

(
1− α2

)
T 3
Y δ+2A2

XTY δ−2α2ε2TY δ−2A2
XTY δ

]
[

+ 6
(
1− α2

)
T 2
Y δ

2 − 6
(
1− α2

)
T 2
Y δ

2 +
(
1− α2

)
T 2
Y δ

2 + A2
Xδ

2 − α2ε2δ2
]

= 0

(69)

where black are the δ0 terms, blue are the δ1 terms, and red is the δ2 terms.
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After cancellations

− α2ε2T 2
Y − 2α2ε2TY δ +

(
1− α2

)
T 2
Y δ

2 + A2
Xδ

2 − α2ε2δ2 = 0

(70)

and since δ � 1 and ε� 1 then δ2ε2 ≈ 0

− α2ε2T 2
Y +

(
1− α2

)
T 2
Y δ

2 + A2
Xδ

2 = 0

(71)

Solving for δ yields

δ2 =
α2ε2T 2

Y

(1− α2)T 2
Y + A2

X

(72)

taking the positive square root

δ =
αεTY√

(1− α2)T 2
Y + A2

X

(73)

so with a limiting approach, δ and ε and are established, ϕ∗ can be defined as

ϕ∗ = atan

(
δ

ε

)
(74)

Substituting δ into the equation yields

ϕ∗ = atan

αεTY√
(1−α2)T 2

Y +A2
X

ε
(75)

and after simplification

ϕ∗ = atan
α√

(1− α2) +
A2

X

T 2
Y

(76)
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Case 3.

In the case where T initially starts in A territory, i.e. TX > 0, T will have to

travel from A territory to D territory. Thus, I-T separation distance is subtracted

from the distance T will travel during the game, as shown in Figure 20.

Figure 20. Visulation of the cost/payoff function when in A territory

and the cost/payoff function is then

J(Y ) = α
√
A2
X + Y 2 −

√
(Y − TX)2 + T 2

X (77)

The first derivative in Y is

dJ

dY
= α

Y√
A2
X + Y 2

− (Y − TY )√
(Y − TX)2 + T 2

X

(78)

the second derivative in Y is

d2J

dY 2
= α

√
A2
X + Y 2 − Y 2√

A2
X + Y 2

A2
X + Y 2

−

√
(Y − TY )2 + T 2

X −
(Y − TY )2√

(Y − TY ) + T 2
X

(Y − TY )2 + T 2
Y

(79)
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Simplifing:

d2J

dY 2
= α

A2
X

[A2
X + Y 2]

3/2

T 2
X[ (

Y − T 2
Y

)
+ T 2

X

]3/2 (80)

T is choosing Y to maximize the cost/payoff function J(Y). The solution Y of the

quartic equation is such that
d2J

dY 2
< 0.

In view of Eq (78) it is known that

1√
(Y − TY )2 + T 2

X

= α
Y

Y − TY
1√

A2
X + Y 2

(81)

Inserting Eq (81) into Eq (79) yields:

d2J

dY 2
= α

1

(A2
X + Y 2)

3/2

[
A2
x − α2

( Y

Y − TY
)3
T 2
x

]
⇒ d2J

dY 2
< 0 (82)

This holds true if and only if:

1

α2

(AX
TX

)2
<
( Y

Y − TY

)3
(83)

The solutions to the quartic equation (Eq.66) provides two real positive values. One

value is greater than TY and one is less than TY . Hence, the real solution Y < TY of

the quartic equation does not fulfill the role of yielding a maximum and the second

real solution Y > TY of the quartic equation is the candidate solution. Thus, it is T

who as before chooses Y to maximize the cost/payoff function J(Y).

Inserting Eq (81) into Eq (77) yields:

1

α2

(AX
TX

)2
<
( Y

Y − TY

)3
(84)
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J(Y ) =
1

α

√
A2
X + Y 2

(
α2 − 1 +

TY
Y

)
(85)

as before. Since now Y > Ty and J(y)> 0, this solution of the quartic equation must

satisfy TY < Y <
1

1− α2
TY .

In Figure 21, the initial starting conditions are shown with the reduced state

space. T starts on the side of the bisector AD under control of A, the Apollonius

circle intersects the bisector and therefore T avoids capture by A as seen in Figure 22.

The zoomed in portion (see Figure 23) shows the final positions of A, D, and T

(noted as A’, D’ and T’ at game termination). The zoomed-in portion also shows

the Apollonius circle intersecting the orthogonal bisector of AD. The final position

of T is across the bisector, and D intercepts A on the orthogonal bisector AD. The

conclusion is T evades capture by A courtesy of D who intercepted A.

Figure 21. Reduced state space not aligned with realistic plane and Apollonius circle
intersects orthogonal bisector. All agents employing optimals strategies.
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Figure 22. Plotted trajectories at conclusion of game.

Figure 23. Zoomed in section near where Apollonius circle intersection the orthogonal
bisector of AD .
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Figure 24. The Apollonius circle does not intersect the orthogonal bisector. The
reduced state space and realistic plane not in alignment

In Figure 24, T starts on the side under the control of A. The Apollonius circle does

not intersect the bisector AD, and T cannot avoid capture by A before D intercepts

A.

3.6 Static Target

The final condition to be considered will be when T is a static target. Since T

is static, the velocity is 0, thus the quartic equation goes from Eq. 86, which it the

same from Eq. 46,

(1−α2)Y 4−2(1−α2)TY Y
3+
[
(1− α2)T 2

Y + A2
X − α2T 2

X

]
Y 2−2A2

XTY (Y )+A2
XT

2
Y = 0

(86)

to

(1−02)Y 4−2(1−02)TY Y
3+
[
(1− 02)T 2

Y + A2
X − 02T 2

X

]
Y 2−2A2

XTY (Y )+A2
XT

2
Y = 0

(87)
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Substituting Y=TY yields

Y 4 − 2Y 4 + Y 4 + A2
XY

2 − 2A2
XY

2 + A2
XY

2 = 0 (88)

which reduces to 0, so the conclusion is that TY =Y.

3.7 Optimal Control Theory

At the Air Force Institute of Technology, students have access to an Optimal Con-

trol Theory (OCT) solver called GPOPS and available within MatlabTM software.

GPOPS solves optimal control problems with numerical methods [13]. Numerical

method analysis techniques are computationally intensive because successive approx-

imations are continually tested until the approximation falls within a previous set of

bounding conditions. GPOPS implements the dynamic equations from Section 3.3

and solves for an optimal control given some objective function. The objective func-

tion is defined as an equation to maximize the final separation distance between A and

T, and is equivalent to the cost/payoff function. GPOPS is also given the sub-optimal

strategies for the players and solves for the control to be optimized. The results from

OCT solution will be presented to draw a comparison between the two methods of

solving the active target defense scenario. Discussion of OCT and the functionality

GPOPS program are not within scope of this thesis. For more in-depth discussion of

GPOPS refer to ”GPOPS-II: A MATLAB Software for Solving Multiple-Phase Opti-

mal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods

and Sparse Nonlinear Programming” by Patterson and Rao [13].
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3.8 Summary

For this chapter, the formulation of the of strategy formulation was discussed.

The chapter started with formulation of the problem. The second point covered was

the strategy synthesis for the agents. Third, formulation of the Apollonius circle

was discussed. The cost function was introduced and the optimization process was

analyzed. The cases where T is a static target were presented. Finally, the OCT

approach to implementation the active target defense scenario was discussed.
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IV. Results

4.1 Introduction

The contents of this chapter contain the results of the active target defense game

simulations constructed from the mathematics presented in Chapter III. First, the

simulation assumptions are defined. Second, to verify that the Chapter III discussion

provides a viable solution, the simulations cover the three possible starting locations

for a mobile Target (T). These starting positions are: T is in Defender (D) territory

(Case 1); T is on the orthogonal bisector of AD (Case 2); T is in Attacker (A)

territory where the Apollonius circle intersects the orthogonal bisector of AD (Case 3

see Figure 25).

Figure 25. Apollonius circle intersecting orthogonal bisector of AD

In addition to the above three cases and additional two cases are presented. Case

4 is presented simulating when T is in A territory where the Apollonius circle does

not intersect the orthogonal bisector of AD. Case 5 to be presented are simulations

for when T is stationary. For each case simulation, D and A initial positions remain

constant, and the initial conditions also put the reduced state space and the realistic

plane in alignment. In the Appendix, the plots of additional testing of simulations

where initial conditions involving translation and rotation of the reduced space rel-

ative to the realistic plane are listed. Rotations and translations demonstrate the
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robustness of the mathematics as well as the implementation of the simulations. Fi-

nally, the last set of results to be presented is the case where a suite of initial positions

and selected scenarios are simulated with Optimal Control Theory (OCT) and Dif-

ferential Game Theory (DGT). The goal is to compare the I-T separation distances

with both methodologies.

4.2 Simulation Assumptions

The outcome of the simulations is to demonstrate the fundamental geometry in

deriving the optimal strategies is sound, with some assumptions. The velocities of

A and D are constant during the simulations, equal and normalized to 1 and the T

velocity is also constant and when scaled is 0.4. The type of motion exhibited by

the agents is simple motion, and all agents are assumed to have perfect, noise free

data inputs. The coordinate systems for the reduced space and realistic plane are

unit-less, and the initial engagement range is considered to be Beyond Visual Range

(BVR). At BVR, flight dynamics are neglected. The time base is also unit-less, and

the time division in the simulations are 0.2 of a time unit. Agents D and A have a

capture radius of 0.4. The strategies for the agents in reduced state space are

For A : ψA = arctan AX

Y
(89)

For D : ψD = arctan AX

Y
(90)

For T : ψT = arctan TY −Y
−TX

(91)

Each case simulation runs a combination of strategy scenarios. In the first scenario,

all agents are following the optimal strategy where Y is the solution to the quartic

equation. In the second scenario, T and D implement optimal strategies and A’s

strategy is the sub-optimal strategy where Y=TY such that TY is the Y component
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of the coordinates of T. A third scenario is where T and D are employing optimal

strategies and A takes a Line -Of -Sight (LOS) approach to T. The fourth scenario, D

and T chose a sub-optimal strategy where Y=TY , and A chooses the optimal strategy.

The fifth scenario is where A and D are following optimal strategies and T follows

a sub-optimal strategy where Y=TY . The sixth scenario is where A and T employ

optimal strategies and D follows a sub-optimal strategy where Y=TY . For the final

scenario, T follows the optimal strategy whereas A and D follow the Y=TY strategy.

The strategy combinations are shown in Table 1.

Table 1. Strategy Combinations

T (target) D (defender) A (attacker)

Scenario 1 Y=quartic eq Y Y=quartic eq Y Y=quartic eq Y

Scenario 2 Y=quartic eq Y Y=quartic eq Y Y=TY

Scenario 3 Y=quartic eq Y Y=quartic eq Y φA = atanAx−Tx
Ty−Ay

Scenario 4 Y=TY Y=TY Y=quartic eq Y

Scenario 5 Y=quartic eq Y Y=TY Y=quartic eq Y

Scenario 6 Y=TY Y=quartic eq Y Y=quartic eq Y

Scenario 7 quartic Y=Y Y=TY Y=TY

4.3 Mobile Target

The general cost/payoff function is Eq. 92

J(Y ) = α
√
A2
X + Y 2 ±

√
(Y − TY )2 + T 2

X (92)

and defines the Intercept-Target (I-T) separation at the end of the target defense

game. Optimization of the cost/payoff function is covered in Chapter III. The ob-
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jective of the simulations is to demonstrate which combinations of strategies favor D

and T, and which combinations favor A. The first scenario will establish a baseline

as all agents are employing optimal strategies. When the distance is greater than

the baseline, then the strategy combinations favor D and T. Conversely, a distance

decrease over the baseline means the strategy combinations favor A.

Case 1 Mobile Target.

As discussed in Chapter III, the first case to be simulated is the initial positions

where T is on the D controlled side of the AD bisector. For comparison of the strategy

combinations to be simulated, the starting locations are held constant. By holding

the starting locations constant, the final I-T separation distance can be compared.

The first starting location are A at (8,0), D at (-8,0), and T at (-8,8), with the realistic

plane and reduced state space initially aligned. The resulting trajectories are shown

in the realistic plane.

Scenario 1.

In the realistic space, strategies

for T: φT = arctan
TY − Y
−TX

+ θ (93)

for A: φA = arctan
AX
Y

+ θ (94)

and

for D: φD = arctan
AX
Y
− θ (95)

are calculated with the solution of the quartic equation. The solutions have a constant

heading as Eq.(94) and (95) have the same result. Since both agents have constant
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headings, the resulting motion is straight line motion, therefore the angle of rotation

between the reduced state space and realistic plane remains constant. As discussed in

Optimization Case 1, the expectation is T should move in a straight line away from

point I as shown in Figure 26.

Figure 26. A and T both employing optimal strategies

The results from Scenario 1 reflects the expectation. At the conclusion of the

game, the I-T separation distance is 12.3562 units, and the resulting trajectories are

shown in Figure 27. The distance for this scenario is the baseline for the other strategy

combination distances. The reduced state space and the realistic plane do not have

an initial rotation angle since both agents start with the spaces aligned.

Figure 27. All agents using optimal strategies. Optimal strategy, α = 2
5
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Scenario 2.

T’s and D’s strategies are calculated with the quartic equation solution Y, and

A’s strategy is calculated based on Y= TY . As A selects a sub-optimal strategy, the

expectation is I-T separation distance will increase verses the result from the first

scenario. At the end of game, the distance is 13.1065 units which is greater than

the 12.3562 units from the baseline. With an increased I-T separation distance, the

strategies employed by the agents favor T and D, as expected. Figure 28 shows the

initial aim points for A and D. Agent A is initially aiming for the point marked as TY

and D is aiming for the point is marked as Y. Since A and D have differing strategies,

the result is an angle of rotation between the reduced state space and the realistic

space. The resulting trajectories are shown in Figure 28.

Figure 28. D,T using optimal strategies. A using suboptimal strategy Y=TY ,and α = 2
5

Scenario 3.

T and D strategies are calculated with the quartic equation solution Y, and A’s

LOS strategy is calculated based on realistic plane coordinates for T such that the
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resulting strategy is

φA = arctan
Ax − Ty
Ty − Ay

(96)

The expectation is T and D will benefit from the selection of the optimal strategies,

and the I-T separation distance will increase verses the result from baseline. At the

end of game, the distance is 12.4532 units which is greater than the 12.3562 units from

the baseline. The increased I-T separation distance means the strategies employed

by the agents favor T and D. The resulting trajectories are shown in Figure 29.

Figure 29. D,T using optimal strategies. A using LOS strategy and α = 2
5

Scenario 4.

T and D strategies are calculated where Y=TY , and A strategy is calculated with

the quartic equation solution Y. Since D and T are selecting sub-optimal strategies

and A is implementing the optimal strategy, the expectation is the cost/payoff will

favor A. The resulting I-T separation distance should be less than what is seen in

the baseline. At the end of game, the distance is 12.2231 units which is less than

the 12.3562 units from Section 4.3. The decreased I-T separation distance means the
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strategies employed by the agents favor A as shown in Figure 30.

Figure 30. A using optimal strategies. D, T using suboptimal strategy Y=TY ,and α = 2
5

Scenario 5.

The starting coordinates for the fifth scenario are the same as the first, A and

D strategies are calculated with the quartic equation solution Y, and T strategy is

calculated where Y=TY . In the scenario, A is implementing the optimal strategy and

D is implementing a sub-optimal strategy. The expectation is the I-T separation dis-

tance will be less than the baseline result. A second expectation is the I-T separation

distance will be greater than the fourth scenario. At the end of game, the distance is

12.2656 units which is less than the 12.3562 units from the baseline and greater than

the 12.2231 units from Scenario 4. The resulting trajectories are shown in Figure

31 and, the decreased I-T separation distance means the strategies employed by the

agents favor A.
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Figure 31. A,T using optimal strategies. D using suboptimal strategy Y=TY ,and α = 2
5

Scenario 6.

The starting coordinates for the final scenario are the same as the first, A and

T strategies are calculated with the quartic equation solution Y, and T strategy is

calculated where Y=TY . In the scenario, A and D are implementing the optimal

strategy and T is implementing a sub-optimal strategy. The expectation is the I-T

separation distance will be less than Section 4.3. At the end of game, the distance is

12.2656 units which is less than the baseline distance. It is also noted the distance

is greater than the results from Scenario 4. The resulting trajectories are shown in

Figure 32 and, the decreased I-T separation distance means the strategies employed

by the agents favor A.
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Figure 32. A,D using optimal strategies. T using suboptimal strategy Y=TY ,and α = 2
5

Scenario 7.

In Scenario 7, T is employing the optimal strategy and D and A are implementing

the sub-optimal strategy where Y=TY . With T optimal and D and A sub-optimal,

the expectation is the final separation distance will favor the T, D team. When the

game concludes, the distance is 12.7581 units which is greater than the 12.3562 units

of the baseline. Resulting trajectories are shown in Figure 33 and, increased I-T

separation distance means the strategies employed by the agents favor T.
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Figure 33. T using optimal strategies. A,D using suboptimal strategy Y=TY ,and α = 2
5

The summary of final distances of the I-T separation at the game conclusion are

shown in Table 2.

Table 2. Distance summary

Scenario 1 12.3562 T optimal D optimal A optimal

Scenario 2 13.1065 T optimal D optimal A sub-optimal

Scenario 3 12.4532 T optimal D optimal A LOS

Scenario 4 12.1032 T sub-optimal D sub-optimal A optimal

Scenario 5 12.1457 T optimal D sub-optimall A optimal

Scenario 6 12.2092 T sub-optimal D optimal A optimal

Scenario 7 12.7581 T optimal D sub-optimal A sub-optimal
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Case 2 Mobile Target.

As in the previous section, the starting locations are held constant so the I-T

separation distance can be compared. The second starting locations are A at (8,0), D

at (-8,0), and T at (0,8), with the reduced state space and the realistic plane initially

aligned. It is noted the choice of initial positions places T on the AD bisector. The

discussion in Chapter III Case 2 covers the formulation of the optimal solution when

T is starting on the orthogonal bisector. The resulting trajectories are shown in the

realistic plane.

Scenario 1.

In this scenario, T is on the orthogonal bisector AD. T has an escape route, and

D aids T. Agents A and D meet on the orthogonal bisector. The final distance with

all agents following the optimal strategy is 4.5820 units and is the baseline for the

following scenarios.

The resulting trajectories are shown in Figure 34.

Figure 34. All agents using optimal strategies. Optimal strategy, α = 2
5
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Scenario 2.

In this scenario, T and D are executing the optimal strategy, A is executing a

strategy where Y =TY , or sub-optimal. The final separation distance is 4.8946 units.

The outcome is an increased distance from the baseline and similar to the result in

Section 4.3. The resulting trajectories are shown in Figure 35.

Figure 35. D,T using optimal strategies. A using suboptimal strategy Y=TY ,and α = 2
5

Scenario 3.

In this scenario T and D are executing the optimal strategy, A is executing a LOS

strategy. The final separation distance is 4.9060 units. The outcome is an increased

distance from the baseline and similar to the result in Section 4.3. The resulting

trajectories are shown in Figure 36.
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Figure 36. D,T using optimal strategies. A using LOS strategy and α = 2
5

Scenario 4.

In this scenario T and D are executing a sub-optimal strategy, A is executing the

optimal strategy. The final separation distance is 4.5075 units. The outcome is a

decreased distance from the baseline and similar to the result in Section 4.3. The

resulting trajectories are shown in Figure 37.
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Figure 37. A using optimal strategies. D, T using suboptimal strategy Y=TY ,and α = 2
5

Scenario 5.

In this scenario T is executing the optimal strategy, D is executing the sub-optimal

strategy Y = TY , and A is executing the optimal strategy. The final separation

distance is 4.4471 units. The outcome is a decreased distance from the baseline and

similar to the result in Section 4.3. The resulting trajectories are shown in Figure 37
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Figure 38. A,T using optimal strategies. D using suboptimal strategy Y=TY ,and α = 2
5

Scenario 6.

In this scenario T is executing the sub-optimal strategy, D is executing the optimal

strategy, A is executing the optimal strategy. The final separation distance is 4.5106

units. The outcome is an decreased distance from the baseline and similar to the

result in Section 4.3. The resulting trajectories are shown in Figure 39.

Figure 39. A,D using optimal strategies. T using suboptimal strategy Y=TY ,and α = 2
5
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Scenario 7.

For Scenario 7, T is employing the optimal strategy and D and A are implementing

the sub-optimal strategy where Y=TY . With T optimal and D and A sub-optimal,

the expectation is the final separation distance will favor the T, D team. At game

conclusion, the distance is 4.7612 units which is greater than the baseline. Resulting

trajectories are shown in Figure 33 and, increased I,T separation distance means the

strategies employed by the agents favor T.

Figure 40. T using optimal strategies. A,D using suboptimal strategy Y=TY ,and α = 2
5

For cases where T is on the orthogonal bisector, the results are summarized in

Table 3 and follow the trend as seen as Table 2.
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Table 3. Distance summary

Scenario 1 4.5820 T optimal D optimal A optimal

Scenario 2 4.8946 T optimal D optimal A sub-optimal

Scenario 3 4.9060 T optimal D optimal A LOS

Scenario 4 4.5075 T sub-optimal D sub-optimal A optimal

Scenario 5 4.4471 T optimal D sub-optimal A optimal

Scenario 6 4.5106 T sub-optimal D optimal A optimal

Scenario 7 4.7612 T optimal D sub-optimal A sub-optimal

Case 3 Mobile Target.

The third starting location is A at (8,0), D at (-8,0), and T at (4,8), with the re-

alistic space and reduced state space initially aligned. It is noted the choice of initial

positions places T on the A controlled side of the AD bisector. The resulting trajec-

tories are shown in the realistic plane. By starting T in A territory, the Apollonius

circle intersects the orthogonal bisector of AD showing that D can provide T aid.

Scenario 1.

In the scenario, T has an escape route, and D aids T. The final distance with

all agents using optimal strategies is 0.8222 units as is the baseline for the following

scenarios. The resulting trajectory of T follows the expectation as in Figure ??. The

resulting trajectories are shown in Figure 41.
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Figure 41. All agents using optimal strategies. Optimal strategy, α = 2
5

Scenario 2.

The results are similar to Scenario 2 from the previous section such that the

optimal strategy favors T and D as the final distance is 0.8314 which is greater than

the baseline distance. The resulting trajectories are shown in Figure 42.

Figure 42. D,T using optimal strategies. A using suboptimal strategy Y=TY ,and α = 2
5
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Scenario 3.

For the scenario, A is employing the same LOS strategy from Section 4.3 resulting

in a curved path. T and D follow the optimal strategies results in an increased

separation distance greater than the baseline. The resulting trajectories are shown in

Figure 43.

Figure 43. D,T using optimal strategies. A using LOS strategy and α = 2
5

Scenario 4.

For Scenario 4, T and D chose non-optimal strategies and A chose the optimal

strategy. The path the agents follow are shown in Figure 44. The final separation

distance is 0.6204 which is less than the baseline.
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Figure 44. A using optimal strategies. D, T using suboptimal strategy Y=TY ,and α = 2
5

Scenario 5.

The resulting trajectories are different than what is seen in Section 4.3. The strat-

egy combination favors A as the distance is less than the baseline. The trajectories

are shown in Figure 45.

Figure 45. A,T using optimal strategies. D using suboptimal strategy Y=TY ,and α = 2
5
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Scenario 6.

D and A have selected optimal strategies and T has chosen a non-optimal strategy

resulting in a final distance that is less than the baseline. The final separation distance

is 0.5651. In the case where T starts in A territory and T chooses a non-optimal

strategy, the resulting final I-T separation is less than the baseline. The strategy

selections favor A. The resulting trajectories are shown in Figure 46.

Figure 46. A,D using optimal strategies. T using suboptimal strategy Y=TY ,and α = 2
5

Scenario 7.

For Scenario 7, T is employing the optimal strategy and D and A are implementing

the sub-optimal strategy where Y=TY . With T optimal and D and A sub-optimal,

the expectation is the final separation distance will favor the T, D team. At game

conclusion, the distance is .8002 units which is less than the baseline. Resulting

trajectories are shown in Figure 33 and, decreased I-T separation distance means the

strategies employed by the agents favor A. Table 4 contains the results of Case 3.
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Figure 47. T using optimal strategies. D and A using suboptimal strategy
Y=TY ,and α = 2

5

Table 4. Distance summary

Scenario 1 .8222 T optimal D optimal A optimal

Scenario 2 .8314 T optimal D optimal A sub-optimal

Scenario 3 .9695 T optimal D optimal A LOS

Scenario 4 .6204 T sub-optimal D sub-optimal A optimal

Scenario 5 .7842 T optimal D sub-optimall A optimal

Scenario 6 .5651 T sub-optimal D optimal A optimal

Scenario 7 .8002 T optimal D sub-optimal A sub-optimal

Further investigation into Scenario 7 for this case was pursued. The initial posi-

tions for D and A were maintained, and T was given the following initial positions as

shown in Table 18.
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Table 5. Position summary for Scenario 7 investigation

T position D position A position Baseline distance Scenario distance

Bisector (0,8) (-8,0) (8,0) 4.5802 4.7612

A territory (0.5,8) (-8,0) (8,0) 4.1517 4.2677

A territory (1,8) (-8,0) (8,0) 3.6282 3.7749

A territory (2,8) (-8,0) (8,0) 2.6836 2.7895

A territory (3,8) (-8,0) (8,0) 1.7469 1.8126

A territory (3.5,8) (-8,0) (8,0) 1.2333 1.2765

A territory (3.75,8) (-8,0) (8,0) 1.0262 1.0371

A territory (4,8) (-8,0) (8,0) 0.8222 0.8002

Appendix Results.

Part of the strategy formulation in the realistic space involves translation and

rotation of reduced state space coordinates relative to the realistic plane. For veri-

fication and validation of the mathematics, the agents are placed in different initial

locations with rotations and translations. The process begins with rotations in both

positive and negative directions. After the rotations are proven, the translations are

added. For each starting position of seven scenarios ran, the collected data to deter-

mine if any relationships develop . A summary of the positions chosen for simulation

are in Table 6. The data results are presented in this chapter, and the figures are

located in the Appendix. The results of the simulations are in Table 7.
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Table 6. Initial Position summary

Position 1 Position 2 Position 3 Position 4 Position 5

D territory D territory D territory D territory D territory

aligned + rotation - rotation + rotation - rotation

-translation - translation

T (-8,8) T (-2.25,8) T (-8,8) T (-8,8) T (-8,8)

D (-8,0) D (-8,-2) D (-8,2) D (-8,-2) D (-10,0)

A (8,0) A (8,2) A (8,-2) A (8,0) A (8,-4)

Position 6 Position 7 Position 8 Position 9 Position 10 Position 11

A territory A territory A territory A territory A territory A territory

aligned + rotation - rotation + rotation - rotation aligned

-translation - translation out of range for D

T ( 0,8) T (0,8) T (4,8) T (2,8) T (4,8) T (6,8)

D (-8,0) D (-6,-2) D(-8,2) D (-8,-2) D (-8,0) D (-8,0)

A (8,0) A (8,2) A(8,-2) A (8,0) A (8,-2) A (8,0)

Table 7. Position distances

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

Position 1 12.3562 13.1065 12.4532 12.1032 12.1457 12.2092 12.7581

Position 2 5.0376 5.2969 5.1255 4.7667 4.9280 4.8290 5.1702

Position 3 13.6476 14.4800 13.6958 13.4669 13.5313 13.4669 13.8980

Position 4 11.6826 12.4337 12.0516 11.5276 11.4990 11.4394 12.2092

Position 5 13.7304 14.6407 13.9675 13.6134 13.6427 13.6134 14.1412

Position 6 4.5802 4.8946 4.7040 4.5075 4.3440 4.5107 4.7612

Position 7 3.2692 3.3936 3.3194 3.0449 3.0869 2.9612 3.3189

Position 8 3.0719 3.2128 3.1405 2.8404 2.7271 2.8404 3.1452

Position 9 1.8742 1.9820 1.9100 1.8398 1.8324 1.7866 1.9106

Position 10 2.3113 2.4791 2.4062 2.0325 2.1974 2.0325 2.4093

Position 11 A captures T A captures T A captures T A captures T A captures T A captures T A captures T
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In each initial starting location, Scenario 1 established the baseline distance. For

remaining scenarios of each position, the final I-T distances were compared to the

baseline distances to develop a pattern. The comparisons were made by

% difference =
|Scenario 1 distance− Scenario N distance|

Scenario 1 distance
∗ 100 (97)

where N is the scenario. The results of the analysis are in Table 19.

Table 8. Position percentages

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

Position 1 0 6.07 0.79 2.05 1.70 1.19 3.25

Position 2 0 5.15 1.74 5.38 2.18 4.14 2.63

Position 3 0 6.10 0.35 1.32 0.85 1.32 1.83

Position 4 0 6.43 3.16 1.33 1.57 2.08 4.51

Position 5 0 6.63 1.73 0.85 0.64 0.85 2.99

Position 6 0 6.86 2.70 1.59 5.16 1.52 3.95

Position 7 0 3.81 1.54 6.86 5.58 9.42 1.52

Position 8 0 4.59 2.23 7.54 11.22 7.54 2.39

Position 9 0 5.75 36.51 1.84 2.23 4.67 1.94

Position 10 0 7.26 4.11 12.06 4.93 12.06 4.24

Position 11 A captures T A captures T A captures T A captures T A captures T A captures T A captures T

Case 4 Mobile Target.

The fourth starting locations is A at (8,0), D at (-8,0), and T at (6,8), with the

realistic plane and reduced state space initially aligned. The choice of initial positions

places T on the A controlled side of the AD bisector. Scenario 1 resulting trajectories

are shown in the realistic plane and shown in Figure!48. By starting T in A territory,

the Apollonius circle does not intersect the orthogonal bisector of AD and shows that

T cannot escape A. The choice of strategy will not impact the final outcome of A

capturing T as seen in Figure 48. The resulting trajectories and outcome seen in

Figure 48 are the same for Scenarios 2 through Scenario 7, and are not presented.
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Figure 48. A,D using optimal strategies. T using suboptimal strategy Y=TY ,and α = 2
5

4.4 Case 5 Static Target

Case 1 Static Target.

As discussed in Chapter III, when the speed ratio ratio α goes to zero, the quartic

equation solution Y is equal to TY . For the first case, the static target to be simulated

begins with position of T on the D controlled side of the AD bisector. For comparison

of the strategy combinations to be simulated, the starting locations are held constant.

By holding the starting locations constant, the final I-T separation distance can be

compared. The starting locations are A at (8,0), D at (-8,0), and T at (-8,8), with

the realistic plane and reduced state space initially aligned. The resulting trajectories

are shown in the realistic plane.

Note that for Scenario 1 (Figure 49), 2 (Figure 50) ,4 (Figure 52), 5 (Figure

53) and 6 (Figure 54) have similar trajectories and final separation distance, while

Scenario 3 (Figure 51) is different as A selects a LOS approach to T. With A not

having feedback on D’s position, A does not avoid D and is intercepted at a greater
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distance than in the other scenarios. The result for Scenario 7 is similar to Scenario

6 and is not presented.

Figure 49. All agents following optimal
strategies.

Figure 50. D,T following optimal strat-
egy, A following sub-optimal strategy

Figure 51. D,T following optimal strat-
egy, A following LOS strategy

Figure 52. A following optimal strat-
egy, D,T following sub-optimal strategy
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Figure 53. A,T following optimal strat-
egy, D following sub-optimal strategy Figure 54. Scenario 6 T in D territory

Case 2 Static Target.

In Case 2, T is on the AD orthogonal bisector. As in Case 1, the starting locations

are A at (8,0), D at (-8,0), and T is moved to at (0,8), with the realistic plane and

reduced state space initially aligned. The resulting trajectories are shown in the

realistic plane.

All six scenarios have similar trajectories as shown in Figures 55,56, 57, 58, 59, 60.

D has a capture radius and intercepts A, however A also has a capture radius and T

is in the capture radius of A at the game conclusion. The conclusion is A wins the

game as A has captured T.

Figure 55. All agents following optimal
strategies.

Figure 56. D,T following optimal strat-
egy, A following sub-optimal strategy
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Figure 57. D,T following optimal strat-
egy, A following LOS strategy

Figure 58. A following optimal strat-
egy, D,T following sub-optimal strategy

Figure 59. A,T following optimal strat-
egy, D following sub-optimal strategy

Figure 60. A,D following optimal strat-
egy, T following sub-optimal strategy

Case 3 Static Target.

For Case 3, T is in A territory. As in Case 1, the starting locations are A at

(8,0), D at (-8,0), and T is moved to at (4,8), with the realistic plane and reduced

state space initially aligned. The resulting trajectories are shown in the realistic space

plane. Since T is static, the Apollonius circle does not apply and T is captured in

each scenario. D cannot cross the orthogonal bisector of AD, and thus cannot aid T.

Scenario 1 to 6 outcomes are seen in Figures 61,62, 63, 64, 65, 66, have the same

outcomes and trajectories and strategy combinations do not impact the final I-T

separation distance.

72



Figure 61. All agents following optimal
strategies.

Figure 62. D,T following optimal strat-
egy, A following sub-optimal strategy

Figure 63. D,T following optimal strat-
egy, A following LOS strategy

Figure 64. A following optimal strat-
egy, D,T following sub-optimal strategy

Figure 65. A,T following optimal strat-
egy, D following sub-optimal strategy

Figure 66. A,D following optimal strat-
egy, T following sub-optimal strategy
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4.5 OCT and DGT

In an effort to validate differential game theory as a method to solve for optimal

strategies, the same dynamic models and initial starting positions were modeled in

Optimal Control Theory (OCT) and Differential Game Theory (DGT). The initial

position of the agents are listed in Table 7. For the simulations, the optimal control

theory solver was treated as a black box.

The scenarios selected for comparison are Scenario 3 and Scenario 7 as both scenarios

can be modeled as a one-sided maximization optimization problem. The figures for

this section are listed in the Appendix.

Scenario 3.

For Scenario 3, both T and D are seeking to maximize the separation distance

following the optimal strategy. With one variable to be optimized as a maximum

for the T and D team, OCT and DGT results were compared for the 10 different

initial starting positions as shown in Table 9 to find the difference between the two

solutions. The results from the OCT and DGT were compared by:

% difference =
|OCT distance−DGT distance|

DGT distance
∗ 100 (98)

and since there is no definitive correct answer, the absolute difference is normalized.

The result is chosen as a figure of merit to show the percent difference between the

two solutions. The OCT A-T separation distance results are greater than the DGT

results. The figures are listed in the Appendix.
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Table 9. Results from OCT and DGT for Scenario 3

Scenario 3 Position 1 Position 2 Position 3 Position 4 Position 5

OTC 12.6843 5.4077 13.8034 12.2759 14.0854

DGT 12.5438 5.2169 13.7261 12.0526 13.9679

% difference 1.1205 3.6565 .5637 1.8527 .8410

Position 6 Position 7 Position 8 Position 9 Position 10

OTC 4.9982 3.6010 3.3961 2.1872 2.7179

DGT 4.6813 3.3807 3.2014 2.0289 2.4960

% difference 6.7704 .6072 6.0825 7.8036 8.8903

Scenario 7.

In Scenario 7, T is running the optimal strategy while D and A are following the

sub-optimal strategy where Y = TY . OCT can solve for the optimal strategy as T is

the only agent seeking to maximize the separation distance with the optimal strategy.

The results are shown in Table 10. Again the OCT results have a greater separation

distance than the DGT results.
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Table 10. Results from OCT and DGT for Scenario 7

Scenario 7 Position 1 Position 2 Position 3 Position 4 Position 5

OTC 12.7885 5.2014 13.9489 12.2461 14.2190

DGT 12.7569 5.1895 13.9149 12.2157 14.1804

% difference 0.2476 0.2289 0.2445 0.2490 0.2723

Position 6 Position 7 Position 8 Position 9 Position 10

OTC 4.7951 3.3540 3.1591 1.9457 2.4309

DGT 4.7806 3.3444 3.1563 1.9422 2.4287

% difference 0.3052 0.2859 0.0873 0 .1809 0.0924

Summary.

In this chapter, the results of the active target defense scenario are presented.

Initially, the assumptions of the simulations were defined. The first set of results

cover the case where the Target (T) is initially in the Defender (D) territory. The

next set of results is the case when T is on the orthogonal bisector. The third set

of results are when the Apollonius circle intersects the orthogonal bisector. In the

fourth set of results, T was placed where the Apollonius circle does not intersect the

orthogonal bisector. The next case to be presented is the case where T is static. The

final case presented is the results where differential game theory and optimal control

theory are simulating the active target defense scenario.
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V. Analysis and Conclusion

5.1 Introduction

The contents of this chapter contains the conclusion of the simulations presented in

Chapter IV. Initially, the conclusions from the cases where T is mobile are presented.

Next, the cases when T is static are presented. Finally, a comparison of Optimal

Control Theory (OCT) and Differential Game Theory (DGT) is presented in reference

to two selected scenarios.

5.2 Mobile Target

Simulation, Results Scenario 1.

In Scenario 1, all three agents are utilizing the quartic equation solution Y, thereby

yielding the optimal strategies. With all agents employing optimal strategies for the

three cases where: T is in D territory; on the orthogonal bisector of AD; and in

T territory, the results serve as a benchmark. The I-T separation at termination is

presented in Table 11. The result of all agents operating with optimal strategies, T

and D have achieved the optimal maximum separation distance, and A has achieved

the optimal minimum separation distance.

Table 11. Cost/payoff summary for Scenario 1

Scenario 1

Case 1 12.3562 T optimal D optimal A optimal

Case 2 4.5820 T optimal D optimal A optimal

Case 3 .8222 T optimal D optimal A optimal
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Simulation Results, Scenario 2.

In Scenario 2, the strategy of agents T and D is based on the quartic solution Y

and A’s strategy is a sub-optimal strategy based on the current location of T, that

is Y= TY . The sub-optimal strategy employed by means A maintains situational

awareness of D at T. The expectation is with A employing a sub-optimal strategy

and D and T employing the optimal strategy, the final separation distance will be

greater than the benchmark distance. Differential Game Theory assumes all players

are acting optimally to achieve their respective goals. In this scenario, A selected a

sub-optimal strategy. During the simulation, D and T are able to capitalize on A’s

selection of a sub-optimal strategy and increase the I-T separation distance. Indeed,

the results in Table 12 show that there is an increase in the final separation distance.

The result is in favor of D and T, as expected.

Table 12. Cost/payoff Summary for Scenario 2

Bench mark Realized Scenario 2

Case 1 12.3562 13.1065 T optimal D optimal A sub-optimal

Case 2 4.5820 4.8946 T optimal D optimal A sub-optimal

Case 3 .8222 .8314 T optimal D optimal A sub-optimal

Simulation Results, Scenario 3.

In Scenario 3 agents the strategy of agents T and D is formulated with the quartic

equation solution Y, whereas and A employs the LOS pursuit strategy. The LOS

strategy does not have situational awareness of D, and A heads straight for T and

ignores D’s approach. Table ?? shows the final distance is increased over the bench-

mark. Again, since A selected a sub-optimal strategy, D and T are able to increase
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the I-T separation distance. The conclusion is this strategy combination favors D and

T, as expected.

Bench mark Realized Scenario 3

Case 1 12.3562 12.4532 T optimal D optimal A LOS

Case 2 4.5820 4.9060 T optimal D optimal A LOS

Case 3 .8222 .9695 T optimal D optimal A LOS

Table 13. Cost/payoff Summary for Scenario 3

Simulation Results, Scenario 4.

For Scenario 4, A’s strategy is the optimal strategy, and D and T strategy is the

sub-optimal strategy. In this scenario, A is expecting D and T to behave optimally,

but the strategy selection is sub-optimal. Since D and T have selected a sub-optimal

strategy, A is able to take advantage of the sub-optimal selection. The exptation for

this scenario is A should be able to take advantage of D and T not operating optimally,

and decrease the I-T separation distance. Table 14 shows that the final distance is

less than the benchmark. Thus, it can be concluded the strategy combinations favors

A.

Table 14. Distance summary for Scenario 4

Bench mark Scenario 4

12.3562 Case 1 12.1032 T sub-optimal D sub-optimal A optimal

4.5820 Case 2 4.5075 T sub-optimal D sub-optimal A optimal

.8222 Case 3 .6204 T sub-optimal D sub-optimal A optimal
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Simulation Results Scenario 5.

In Scenario 5, A and T follow the strategy the optimal strategies, and D follows

the sub-optimal strategy. With D selecting the sub-optimal strategy, A is able to

improve his ability to avoid D as D is not employing the optimal strategy. Since

A takes advantage of D’s sub-optimal strategy choice, A is able to decrease the I-T

separation distance. Table 15 shows that the final distance for the three scenarios.

The conclusion is the strategy favors A, which is the expected outcome.

Table 15. Distance summary for Scenario 5

Bench mark Scenario 5

12.3562 Case 1 12.1457 T optimal D sub-optimal A optimal

4.5820 Case 2 4.4471 T optimal D sub-optimal A optimal

.8222 Case 3 .7842 T optimal D sub-optimal A optimal

Simulation Results Scenario 6.

For Scenario 6, A and D chose the optimal strategy, and T chose the sub-optimal

strategy. In this scenario, T is not following the optimal strategy, whereas D and A are

following the optimal strategy. With D following the optimal strategy, D intercepts

A as expected, but A is able to decrease the I-T separation distance since T is not

following the optimal strategy. Table ?? shows that the final distance is less than

the benchmark and the outcome favors A. The conclusion is the strategy favors A,

as expected.
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Bench mark Scenario 6

12.3562 Case 1 12.2092 T sub-optimal D optimal A optimal

4.5820 Case 2 4.5106 T sub-optimal D optimal A optimal

.8222 Case 3 .5651 T sub-optimal D optimal A optimal

Table 16. Distance summary for Scenario 6

Simulation Results Scenario 7.

The results in Scenario 7 do not follow the trend seen in the previous six scenarios,

T followed the optimal strategy, and D and A employed sub-optimal strategies. In

Case 1 and Case 2, T takes advantage of the A’s sub-optimal strategy choice and

increases the final separation distance over the baseline. Case 3 does not follow the

trend. The expectation is T should increase the I-T separation distance, however this

is not the outcome. Table 17 shows that the final distance is not greater than the

benchmark in all three cases.

Table 17. Distance summary for Scenario 7

Bench mark Scenario 7

12.3562 Case 1 12.7581 T optimal D sub-optimal A sub-optimal

4.5820 Case 2 4.7612 T optimal D sub-optimal A sub-optimal

.8222 Case 3 .8002 T optimal D sub-optimal A sub-optimal

With the outcome for Case 3 not following the trend, further investigation into

the outcome required testing of additional initial positions for T. Table 18 shows the

positions tested. The initial positions of A and D were held constant, and T was

moved from D territory, then to the orthogonal bisector of AD, and finally moved in
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to A territory. Given the condition where T is in D territory or on the orthogonal

bisector , T’s choice of the optimal strategy based on the quartic equation solution is

the best choice. When T is past the boundary condition, the quartic equation solution

no longer optimizes the approach strategy. This finding was not within the scope of

the experimentation and therefore not pursued. Further research can be performed

in exploration of the boundary condition.

Table 18. Position summary for Scenario 7 investigation

T position D position A position Baseline distance Scenario distance

Bisector (0,8) (-8,0) (8,0) 4.5802 4.7612

A territory (0.5,8) (-8,0) (8,0) 4.1517 4.2677

A territory (1,8) (-8,0) (8,0) 3.6282 3.7749

A territory (2,8) (-8,0) (8,0) 2.6836 2.7895

A territory (3,8) (-8,0) (8,0) 1.7469 1.8126

A territory (3.5,8) (-8,0) (8,0) 1.2333 1.2765

A territory (3.75,8) (-8,0) (8,0) 1.0262 1.0371

A territory (4,8) (-8,0) (8,0) 0.8222 0.8002

Simulation Results Analysis.

The percentage results from Chapter IV are listed below. By comparing the

benchmark distance in Scenario 1 to the remaining scenario distances, there no dis-

tinct pattern that developed that favors any one strategy combination over any other

combination as shown in Table 19. The expectation was that one scenario would

consistently have an increased I-T separation distance. The results in the table show

there is no scenario that results in better I-T separation distance. For example,

Position 1 Scenario 2 has a separation percentage greater than the remaining scenar-
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ios. However in Position 7 Scenario 6, the separation percentage was greater that

the remaining scenarios. The conclusion there does not appear to be a pattern or

relationship between initial positions and final I-T separation distance.

Table 19. Position percentages

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

Position 1 0 6.07 0.79 2.05 1.70 1.19 3.25

Position 2 0 5.15 1.74 5.38 2.18 4.14 2.63

Position 3 0 6.10 0.35 1.32 0.85 1.32 1.83

Position 4 0 6.43 3.16 1.33 1.57 2.08 4.51

Position 5 0 6.63 1.73 0.85 0.64 0.85 2.99

Position 6 0 6.86 2.70 1.59 5.16 1.52 3.95

Position 7 0 3.81 1.54 6.86 5.58 9.42 1.52

Position 8 0 4.59 2.23 7.54 11.22 7.54 2.39

Position 9 0 5.75 36.51 1.84 2.23 4.67 1.94

Position 10 0 7.26 4.11 12.06 4.93 12.06 4.24

Position 11 A captures T A captures T A captures T A captures T A captures T A captures T A captures T

5.3 Static Target Analysis

For Case 1 when T is located in D territory, distance separation distance are

relatively close for each starting position. In the first starting location, the distances

are close except when A chose a LOS approach. Since A chose a LOS approach and

ignored the approach of D, D was able to increase the I-T separation distance. In Case

2, A won the scenario even though A is captured by D. Both D and A have a capture

circle. A successful capture occurred when A fell in the capture circle of D. However,

since T fell in A’s capture circle, A won as T did not ultimately avoid capture. For

Case 3, A won each scenario as T could not cross the orthogonal bisector.

5.4 Comparison of OCT and DGT

Two case were selected to compare Optimal Control Theory (OCT) and Differ-

ential Game Theory (DGT). The cases compared are Scenario 3 where both T and
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D working cooperatively, and Scenario 7 where T is optimal and D and A are sub-

optimal. To give the two methodologies a variety of starting positions, the initial

positions are listed in Table 6 and contain rotations and translations between the

realistic space and the reduced state space. For the OCT modeling, the players’

sub-optimal strategies are known in advance, whereas DGT modeling is with the as-

sumption that all players are following the optimal strategy. Since the strategies are

known in advance for the OCT solution, the expectation is OCT will give a greater

final separation distance than DGT.

Scenario 3.

In Scenario 3, the T and D team objective was to maximize the I-T separation

distance by following the optimal strategy, with A following a sub-optimal strategy.

With one scenario defined as a maximization problem for the T and D team, OCT

and DGT results were compared for the 10 different initial starting positions (shown

in Table. 6) to find the difference between the two solutions. The maximum percent

difference between the the two solutions in this scenario is less than 9%. The OCT

results have a greater separation distance distance over DGT, which is expected.

Scenario 7.

For Scenario 7, T’s objective is to maximize the I-T separation distance with D

and A following sup-optimal strategies. As in the previous scenario, this was defined

as a maximization problem for the T, OCT and DGT results were compared for the 10

different initial starting positions (shown in Table. 6) to find the difference between

the two solutions. The maximum percent difference between the the two solutions in

this scenario is less than 1% . The OCT results have a greater separation distance

distance over DGT, which is expected.
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Summary.

In this chapter, the conclusions of the simulations were presented. The chapter

started with an analysis of the mobile target cases. Next, the static target cases

were discussed. Finally a comparison between OCT and DGT were presented, and

conclusions were made about the results.
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VI. Conclusions and Future Research

6.1 Conclusions

The goal of this research was to develop a method of deriving guidance laws based

on positional information and incorporating feedback for a three agent active defense

scenario. After the proposed guidance laws were developed, they were tested via

simulation against combinations of guidance laws that were optimal and sub-optimal.

In the case where the Attacker (A) is minimizing the Intercept-Target (I-T) distance

while the Target (T) and Defender (D) are maximizing the I-T distance and all

agents followed the optimal strategies, Differential Game Theory (DGT) solved for

the min-max I-T distance. When D and T chose the optimal strategy against A with

a selection of non-optimal strategy, the end result was a final separation distance that

favors D and T. When T and D select a combination of sub-optimal strategies while A

selects the optimal strategy, the final separation distance favors A. Two scenarios were

chosen as test cases to compare the results from DGT and Optimal Control Theory

(OCT). The scenarios selected were; T and D employed the optimal strategy against

A employing an LOS strategy (Scenario 3); and the scenario where D and A both

chose sub-optimal strategies with T chose optimal strategies (Scenario 7) . These

two scenarios were chosen because OCT can solve the problem as a maximization

problem for the I-T distance, and gives validity to differential game theory as a

tool that can solve one sided optimal control problems. The result is both methods

arrived at solutions that are up to 92% of each other. The conclusion is DGT can

solve optimization problem, for both maximization and minimization-maximization

problems.
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Future Research.

Differential Game Theory can be employed to solve a diverse array of problems.

The fundamental geometry established based on low fidelity models, higher fidelity

models can be developed that incorporate flight dynamics and environmental effects.

With robust models, the possibility of testing the guidance laws can lead to conducting

tests on ground vehicles and later flight testing. Other scenarios to be explored is the

geometric relationships when A and D having different speeds. Additional scenarios

to considered is given a static target, and determining the best positioning of the

defender based on the direction of the attacker. An extension of the static target

case is also the concept of the differential coastal defense game where the target is

not a static point target but rather a polygon or a plane. In these types of static

target games, elements to be explored is the optimal behavior of the attacker and the

defender where they have same speeds or different speeds.
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Appendix A.

1.1 Position 1

This section contains the plot for the positions where rotations and translations

are introduced between the reduced state and the realistic space. These plot were

generated using Matlab as teh program to run the simulations.

Figure 67. Position 1, Scenario 1 Figure 68. Position 1, Scenario 2
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Figure 69. Position 1, Scenario 3 Figure 70. Position 1, Scenario 4

Figure 71. Position 1, Scenario 5 Figure 72. Position 1, Scenario6
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Figure 73. Position 1, Scenario 7
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Appendix B.

2.1 Position 2

Figure 74. Position 2, Scenario 1 Figure 75. Position 2, Scenario 2

Figure 76. Position 2, Scenario 3 Figure 77. Position 2, Scenario 4
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Figure 78. Position 2, Scenario 5 Figure 79. Position 2, Scenario 6

Figure 80. Position 2, Scenario 7
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Appendix C.

3.1 Position 3

Figure 81. Position 3, Scenario 1 Figure 82. Position 3, Scenario 2

Figure 83. Position 3, Scenario 3 Figure 84. Position 3, Scenario 4

93



Figure 85. Position 3, Scenario 5 Figure 86. Position 3, Scenario 6

Figure 87. Position 3, Scenario 7
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Appendix D.

4.1 Position 4

Figure 88. Position 4, Scenario 1 Figure 89. Position 4, Scenario 1

Figure 90. Position 4, Scenario 3 Figure 91. Position 4, Scenario 4
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Figure 92. Position 4, Scenario 5 Figure 93. Position 4, Scenario 6

Figure 94. Position 4, Scenario 7
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Appendix E.

5.1 Position 5

Figure 95. Position 5, Scenario 1 Figure 96. Position 5, Scenario 2

Figure 97. Position 5, Scenario 3 Figure 98. Position 5, Scenario 4
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Figure 99. Position 5, Scenario 5 Figure 100. Position 5, Scenario 6

Figure 101. Position 5, Scenario 7
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Appendix F.

6.1 Position 6

Figure 102. Position 6, Scenario 1 Figure 103. Position 6, Scenario 2

Figure 104. Position 6, Scenario 3 Figure 105. Position 6, Scenario 4
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Figure 106. Position 6, Scenario 5 Figure 107. Position 6, Scenario 6

Figure 108. Position 6, Scenario 7
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Appendix G.

7.1 Position 7

Figure 109. Position 7, Scenario 1 Figure 110. Position 7, Scenario 2

Figure 111. Position 7, Scenario 3 Figure 112. Position 7, Scenario 4
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Figure 113. Position 7, Scenario 5 Figure 114. Position 7, Scenario 6

Figure 115. Position 7, Scenario 7
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Appendix H.

8.1 Position 8

Figure 116. Position 8 Scenario 1 Figure 117. Position 8, Scenario 2

Figure 118. Position 8, Scenario 3 Figure 119. Position 8, Scenario 4
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Figure 120. Position 8, Scenario 5 Figure 121. Position 8, Scenario 6

Figure 122. Position 8, Scenario 7
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Appendix I.

9.1 Position 9

Figure 123. Position 9 Scenario 1 Figure 124. Position 9, Scenario 2

Figure 125. Position 9, Scenario 3 Figure 126. Position 9, Scenario 4
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Figure 127. Position 9, Scenario 5 Figure 128. Position 9, Scenario 6

Figure 129. Position 9, Scenario 7
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Appendix J.

10.1 Position 10

Figure 130. Position 10 Scenario 1 Figure 131. Position 10, Scenario 2

Figure 132. Position 10, Scenario 3 Figure 133. Position 10, Scenario 4
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Figure 134. Position 10, Scenario 5 Figure 135. Position 10, Scenario 6

Figure 136. Position 10, Scenario 7
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Appendix K.

11.1 Position 11

For the initial position of T, there is no strategy combination where D can aid T.

T is captured by A at the boundry of the Apollonius circle.

Figure 137. Position 11 Scenario 1 Figure 138. Position 11, Scenario 2
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Figure 139. Position 11, Scenario 3 Figure 140. Position 11, Scenario 4

Figure 141. Position 11, Scenario 5 Figure 142. Position 11, Scenario 6
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Figure 143. Position 11, Scenario 7
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Appendix L.

12.1 DGT and OCT results

This section contains the plot for the Optimal Control Theory and the Differential

Game Theory comparison for Scenario 3 and Scenario 7. The plots are of ten different

starting positions for both scenarios.

Figure 144. Scenario 3, Position 1 Figure 145. Scenario 3, Position 1

Figure 146. Scenario 3, Position 3 Figure 147. Scenario 3, Position 3
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Figure 148. Scenario 3, Position 5 Figure 149. Scenario 3, Position 6

Figure 150. Scenario 3, Position 7 Figure 151. Scenario 3, Position 8

Figure 152. Scenario 3, Position 9 Figure 153. Scenario 3, Position 10
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Figure 154. Scenario 7, Position 1 Figure 155. Scenario 7, Position 1

Figure 156. Scenario 7, Position 3 Figure 157. Scenario 3, Position 7

Figure 158. Scenario 7, Position 5 Figure 159. Scenario 7, Position 6
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Figure 160. Scenario 7, Position 7 Figure 161. Scenario 7, Position 8

Figure 162. Scenario 7, Position 9 Figure 163. Scenario 7, Position 10
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